Evolutionary Learning of Technical Trading Rules without Data-Mining Bias
نویسندگان
چکیده
In this paper we investigate the profitability of evolved technical trading rules when controlling for data-mining bias. For the first time in the evolutionary computation literature, a comprehensive test for a rule’s statistical significance using Hansen’s Superior Predictive Ability is explicitly taken into account in the fitness function, and multi-objective evolutionary optimisation is employed to drive the search towards individual rules with better generalisation abilities. Empirical results on a spot foreign-exchange market index suggest that increased out-of-sample performance can be obtained after accounting for data-mining bias effects in a multi-objective fitness function, as compared to a single-criterion fitness measure that considers solely the average return.
منابع مشابه
Stock market trading rule discovery using technical charting heuristics
In this case study in knowledge engineering and data mining, we implement a recognizer for two variations of thèbull ¯ag' technical charting heuristic and use this recognizer to discover trading rules on the NYSE Composite Index. Out-of-sample results indicate that these rules are effective. q 2002 Elsevier Science Ltd. All rights reserved.
متن کاملEvolving technical trading rules for spot foreign-exchange markets using grammatical evolution
Grammatical Evolution (GE) is a novel, data-driven, model-induction tool, inspired by the biological gene-to-protein mapping process. This study provides an introduction to GE, and applies the methodology in an attempt to uncover useful technical trading rules which can be used to trade foreign exchange markets. In this study, each of the evolved rules (programs) represents a market trading sys...
متن کاملFuzzy-Evolutionary Modeling for Single-Position Day Trading
This chapter illustrates a data-mining approach to single-position day trading which uses an evolutionary algorithm to construct a fuzzy predictive model of a financial instrument. The model is expressed as a set of fuzzy IF-THEN rules. The model takes as inputs the open, high, low, and close prices, as well as the values of a number of popular technical indicators on day t and produces a go sh...
متن کاملMining in-depth patterns in stock market
Stock trading plays an important role for supporting profitable stock investment. In particular, more and more data mining-based technical trading rules have been developed and used in stock trading systems to assist investors with their smart trading decisions. However, many mined trading rules are of no interest to traders and brokers because they are discovered based on statistical significa...
متن کاملPrediction of Financial Performance Using Genetic Algorithm and Associative Rule Mining
The proposed system introduces a new genetic algorithm for prediction of financial performance with input data sets from a financial domain. The goal is to produce a GA-based methodology for prediction of stock market performance along with an associative classifier from numerical data. This work restricts the numerical data to stock trading data. Stock trading data contains the quotes of stock...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010